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Abstract. An explicit expression is obtained for the perimeter generating function 
G(y) = Cn,2ang2n for row-convex polygons on the square lattice, where an is 
the number a 2n step row-convex polygons. An asymptotic expression for 4, N 

Apnn-3/2 is obtained, where p = 3 + 2 f i  and A is given. We also show that the 
generating function is an algebraic function and that it satisfies an inhomogeneous 
linear differential equation of degree three. 

1. Introduction 

Despite strenuous efforts over the past 40 years, the problem of 'self-avoiding polygons' 
in two or more dimensions remains unsolved. A large amount of numerical evidence 
exists and, for the hexagonal lattice, the critical point is exactly known, as is the critical 
exponent (Nienhuis 1982, 1984, Guttmann and Enting 1988a, Enting and Guttmann 
1989). In that case, the polygon generating function for the number of 2n step 
polygons, is 

2 
where a is believed to be exactly f for all twedimensional lattices, yip) = 2 - 4 for 

the honeycomb lattice, and y,$') w 0.143 680. . . for the square lattice. 
Simpler versions of the problem have been solved. The simplified versions are 

usually subsets of the self-avoiding polygon problem, and indeed are generally ex- 
ponentially small subsets. Nevertheless, it is hoped that their solution will provide 
insight into the original problem. Further, many of the simplified problems are of in- 
terest in their own right, not just as combinatorial objects, but as problems that arise 
in other areas of science, such as computer science (e.g. Delest and Viennot 1984). 

The first such restricted problem, where we confine ourselves to the square lattice, 
is that of staircase polygons, first solved by Temperley (1956) and independently by 
P6lya (1969). In that case, if we define the bottom left-most vertex as the origin, 

2 
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steps from the origin may only be north or east. A more difficult problem is that  
of convex polygons, which are polygons whose minimum bounding rectangle has the 
same perimeter as the polygon, This problem is of interest in computer science, and 
was first solved by Delest and Viennot (1984), and was subsequently independently 
solved by Guttmann and Enting (1988b), Lin and Chang (1988) and Kim (1988), 
all by different methods. Convex polygons are a superset of the staircase polygons. 
The staircase polygons may be considered as polygons convex with respect to a line 
a t  45O to  a lattice axis (P6lya 1969). A superset of convex polygons arises if we 
impose convexity in the direction of only one of the lattice axes. If the number of 
vertical steps in the minimum bounding rectangle equals the number of vertical steps 
in the polygon, but the horizontal steps are unrestricted, we speak of 'row-convex' 
polygons. This model was introduced by Temperley (1956), who called it 'Model Q' 
in his hierarchy of models. Temperley obtained an implicit equation for the generating 
function. 

In this paper we obtain an explicit solution for the generating function. We show 
that  it is an algebraic function and we give an explicit expression for the degree- 
four algebraic equation. We also obtain the corresponding third-order inhomogeneous 
linear differential equation, and an asymptotic expression for U,, the number of 2n step 
row-convex polygons. Further work on the convex polygon problem shows it satisfies a 
second order algebraic equation, and a first-order inhomogeneous differential equation. 
These are also given explicitly. 

In terms of critical behaviour, the staircase polygon generating function behaves 
as 

2 
where y?) = 1/4, the convex polygon generating function behaves as 

M 

2 
where y?) = 1/4, and the row-convex polygon generating function behaves as 

m 

where y," = 3 - 2 4 .  

for row-convex polygons in terms of both area and perimeter. 
In a subsequent paper we hope to  describe the two-variable generating function 

2. Generating function 

Let gr be the generating function for row-convex polygons whose first row contains 
exactly r squares. Then Temperley (1956) has shown that g, satisfies the following 
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set of equations 

91 = Y4 + YY91 + 2g2 + 3g3 + 494 + . ' 9 )  

gZ = y6 + y2[2y2g1 + (1 + 2y2)g2 + (2 + 2y2)g3 + (3  + 2y2)g4 + . . .] 
93 = y8 + Y2[3y4gl + (2y2 + 2y4)g2 + (1 + 2y2 + 2y4)g3 + (2 + 2y2 + 2y4)g4 + . . .] 
g4 = ~ ' ~ + ~ ~ [ 4 ~ ~ ~ ~ + ( 3 ~ ~ + 2 ~ ~ ) ~ ~ + ( 2 ~ ~ + 2 ~ ~ + 2 y ~ ) g ~ + ( 1 + 2 ~ ~ + 2 ~ ~ + 2 y ~ ) g ~ + .  . .] 

(1) 

and similarly for r > 4. From these it is easily shown that gr satisfies the recurrence 
relation 

Trying a solution of the form gr = A' leads to  the characteristic equation 

[ A 2  - X(1+ y + y 2  - y3)+ y2] [ A 2  - X ( l  - y + y 2  + y3) + Y 2 ]  = 0 (3) 

and hence 

4 

gr = A j  A$ 
j = 1  

(4) 

where A, are arbitrary functions of y (but independent of r ) ,  and the X j  are the four 
solutions of (3). The full perimeter generating function is given by 

Because of the considerable algebraic complexity of finding the A, this is as far as 
Temperley went. However, using the computer algebra program Mathematica (Wol- 
fram 1988) we have been able to  find an explicit expression for G(y). The four roots 
of (3) are 

In the limit y -+ 0 we have 
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whilst gr - O(yZr+z), thus we must have A ,  = 0, A,  = 0. Let 
m 

then gr ,  H(y) and G(y) are given by 

gr = A,X', + A4X; 

Using equations ( l ) ,  ( 5 )  and (8) enables us to write g1 and g1 - g2 in the form 

91 = Y4 + Y2H(Y) 
g2 - 91 = Y4(Y2 - 1) + Y2(2Y2 - 1)G(Y) 

which provide the 'initial conditions' for the recurrence relation. Substituting (9) into 
(10) gives two linear equations which can be solved for the two unknowns A ,  and 
A,. Combining all this together, and after considerable manipulation, we obtain the 
following expression for the generating function G(y): 

. (  
(yz - 1)(-21 + 47y2 - 35y4 + 5y6) - 3(y2 - 1)2(1 + y2)(1 - 6y2 + y 4 ) 112 

4 112 - 9fi(Y2 - 1)' [(y4 - l)(y2 - 1) - (y4 - 1)(1 - 6y2 + y ) ] 
4 1/2 l t2  - h Y ( Y 4  - 1) [(p4 - l)(y2 - 1) + (y4 - 1)(1 - 6yz + y ) ] 

where 

A = 4(18 - 38y2 + 23y4 - 2y6). (12) 
The  generating function can be expanded in a Taylor series about y = 0 to give 

the polynomial counts which are listed in table 1 to order yS0. These coefficients agree 
with the series expansions obtained by Whittington (unpublished) and by our own 
work using transfer matrix techniques analogous to  those described by Guttmann and 
Enting (1988b). 

An asymptotic expansion for Q, is obtained as follows: changing the variable from 
y to z = y2 and expanding enables (11) to be written in the form 

do + d,(z, - z)'l2 + d z ( z ,  - z) + d,(+, - z),/' + O(zc - z)' (13) 

where do,  . . . , d ,  are the following constants 

do = 8(17 - l l f i )  + K ,  + I<, 
d,  = r 3 I 4 (  1 + J z ) ( K ,  - K z )  - 24(2)'f4( 10 - 7f i )  

d, = f [(3 + 4 h ) K l  - (7 + 3 h ) K z ]  - 4(91 - 7 2 h )  (14) 

2- 114 

16 d3 = - [96(51& - 74) + (41 + 3 1 h ) K 1  + (27 - 17h)I< , ]  
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Table 1. Coefficients of the row-convex polygon generating function, where an is 
the number of 2n step polygons embeddable on the square lattice. 

2n an 

4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

100 

1 
2 
7 
28 
122 
558 
2 641 
12 822 
63 501 
319 554 
1 629 321 
8 399 092 
43 701 735 
229 211 236 
1 210 561 517 
6 432 491 192 
34 364 148 528 
184 463 064 936 
994 430 028 087 
538165 340 2890 
29226425965907 
159 227 245 772460 
870 004 781 620 093 
4 766 330 416 567 254 

23 009 883 134 845 019 582 736 684 790 483 311 

where 

K ,  = -72f i (676 - 478A) ' l '  

K ,  = 164(1970 - 1393&)'/'. 

Then Taylor expanding (2, - z)lI2 and (cc - z ) ~ / '  and collecting the appropriate 
terms gives 

(3 + 2JZ)n-%-3/2 [CO + + 0 ($)I 
where 

97 + 

[(l + &)(52090 - 36833&)'/' + 6(10 - 7&)] 
(47)'J;; 

CO = 

= 0.102 834 715 3765.. . 

c1 = 3 [4(47)'(51 - 1 4 h ) d 3  - (512729 + 407516h)d,] 
26(47)4fi 

(17) = 0.038 343 814 8233.. . . 

Using equation (16) gives us0 = 2.299 88 x 
exact value given in table 1. 

which should be compared with the 



2324 R Brak, A J Guttmann and I G Enting 

3. Algebraic and differential equations 

The  rational exponents that  appear in G(y) suggest that  it is an algebraic function. 
By suitably manipulating and 'squaring' (11) it can be shown that  it satisfies the 
following degree-four algebraic equation 

(-18 + 389' - 23y4 + 2y6) G4 + (y2 - 1) (-21 + 47y2 - 35y4 + 5y6) G3 

+ q Y 2  - i12 (-4 + ioy2 - i i y 4  + 2y6) ~2 

+ (y2 - 1)3  (-1 + 3y2 - 7y4 + y6) G = y4(y2 - 1)4  (18) 

which is plotted in figure 1.  The  plot shows clearly the geometrical nature of the 
singularities of the function, as well as its four branched nature. Series expansions 
are only able to  'plot' the branch passing through the origin (as they are a Taylor 
expansion about this point) and only for lyl < yc. Furthermore, the explicit expression 
( l l ) ,  if plotted directly, also only gives a subset of the branches. We denote the 
above algebraic equation by [6,8,10,12;12], where the numbers are the degrees of the 
polynomial coefficients, starting with the coefficient of the highest degree of G I  and 
the semicolon delimits the inhomogeneous term. 

'I" I I I I 

- 0 . L  - 0 2  3 0.2 0 . 4  

- -  I \ 

-75 
'0.1- 

- 0 L  - 0 . 2  '3 0 2  0 . L  

- L  - 2  0 2 L 

Figure 1. A plot of the real part of the (in general) four-branched algebraic gener- 
ating function G(y) plotted against y. Note that there are isolated points at (f1,O). 
The upper inset is an enlargement of the origin, and the lower inset the function at 
infinity i.e. l/y plotted against 1/G. 

The singularities of the algebraic function are given by the roots of the resultant 
of the algebraic equation and its partial derivative with respect to  the dependent 
variable. Thus for the row-convex generating function the resultant is 

16(y2 - l)'sy2(1 + y2)'(1 - 6y2 + y4)' (-18 + 38y2 - 23y4 + 2y6) (19) 

and hence i t  has 16 singularities y = fO, y = f l ,  y = Iti,  y = f l  f f i  and the six 
roots of the last factor plus an additional singularity a t  infinity. 
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Using the generating function for convex polygons it is easily shown that  it satisfies 
the following [8,14;20] degree-two algebraic equation 

(4y2 - l)4Gfc) + 2y4(4y2 - 1)'(-1 + 6y2 - l l y 4  + 4y6)G(,) 

= -U'( 1 6 ~ ' ~  - 2 4 ~ "  + 153~ '  - 1 4 0 ~ ~  + 58y4 - 12yz + 1) (20) 

which only has three finite singularities a t  y = 0, f1 /2 .  
As shown by Forsyth (1902) any algebraic function of degree k satisfies a homoge- 

neous linear differential equation of degree k, or an inhomogeneous linear differential 
equation of degree k - 1. Using the method of Forsyth we obtain the following degree- 
three inhomogeneous differential equation for the row-convex generating function: 

where 

p3(y) = -(y4 - 1)3(1 - 6y2 + y4)' (-18 + 38y2 - 23y4 + 2y6) 

x (-8 - 156~ '  + 3 1 0 ~ ~  - 14y6 + 9 3 ~ '  - 47y10 - 4 5 ~ "  - 3y14 + 6 ~ ' ~ )  

p,(y) = -12y(y2 - 1)'(1 + (1 - 6yz + y4) (692 - 2916~' - 1500y4 
+ 2 5 0 9 2 ~ ~  - 38449~' + 1 5 2 4 5 ~ ~ '  - 9 6 ~ "  + 7 6 9 3 ~ ' ~  - 7 2 6 3 ~ ' ~  
- 3 7 7 ~ ~ '  + 2 3 4 2 ~ ~ '  - 809~"  + 7 4 ~ ' ~ )  

~ l ( y )  = 12 (y2 - 1) (1 + y2) (80 - 3 4 2 4 ~ ~  + 4 0 0 7 6 ~ ~  - 1 0 4 1 9 6 ~ ~  - 161432~' 
+ 1148772~" - 1835093~" + 8 8 3 4 1 5 ~ ' ~  + 3 8 9 9 5 3 ~ ' ~  - 2 7 7 6 9 1 ~ ' ~  
- 767399" - 1 1 4 0 8 9 ~ ~ ~  + 194609~ '~  - 4 9 8 8 9 ~ ' ~  - 3 1 1 4 4 ~ ' ~  
+ 1 9 6 9 0 ~ ~ '  - 3 5 1 0 ~ ~ ~  + 196g4) (22)  

~o(y) = -24~(412 - 4 1 4 8 ~ ~  + 2 0 0 9 2 ~ ~  - 9 0 0 0 0 ~ ~  + 321181~'- 1 0 5 2 0 3 5 ~ ' ~  
+ 2006120~ '~  - 1 9 9 8 2 1 6 ~ ~ ~  + 9 6 9 9 6 5 ~ ' ~  + 667~"  - 128962~" 
+ 74592~" - 1 8 0 2 0 9 ~ ~ ~  + 135691~ '~  - 15820~" - 2 8 3 1 2 ~ ~ '  
+ 14843g' - 2463g4 + 122g6)  

q(Y) = 24y (-1 + y2) (144 - 1952~'  + 7 0 4 0 ~ ~  + 31 1 8 4 ~ ~  
- 235812~' + 640300~'' - 783798~" + 3 6 6 1 0 8 ~ ' ~  - 2 3 5 7 3 ~ ' ~  
+ 29898~" - 11552~" - 7 0 8 1 6 ~ ~ '  + 6 2 2 6 2 ~ ' ~  
- 7 4 3 2 ~ ' ~  - 1 1 0 2 6 ~ ' ~  + 5 7 6 4 ~ ~ '  - 1 1 8 9 ~ ~ '  + 9 8 ~ ~ ~ ) .  

Analogous to the previous notation this a [42,39,38,37;37] differential equation, and it 
is very clear that  the algebraic equation is a far more economical representation of the 
same function. This is an important feature of the algebraic equation particularly when 
approximating a function as is done in series analysis or when numerically searching 
for exact solutions. A change of variable from y to  c = y2 can be made in the 
differential equation with the coefficients still remaining polynomial. If this is done 
the equation in c becomes a [22,21,19,18;18] differential equation, and (18) becomes 
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a [3,4,5,6;6] algebraic equation. The corresponding inhomogeneous equation for the 
convex polygons is of degree one, with 

pf)(z) = 8z5(4z - q4 
p t ) ( z )  = -2(4z - 1)2(-1 + 15x - 99z2 + 361z3 - 7 4 2 ~ ~  + 7702' - 320z6 + 96z7) 
q(')(z) = z2( 1-62 + 1 1z2-4z3)( 1 - 152 +99x2 -361z3+726z4-666z5 + 16Oz6-96z7) 

(23) 

and hence is a [9,9;12] equation. This contrasts with the degree-two homogeneous 
equation found by Guttmann and Enting (1988b), which is a [4,3,2;3] equation. 
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